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AUTOIMMUNE DISEASE

Patients with LRBA deficiency show
CTLA4 loss and immune dysregulation
responsive to abatacept therapy
Bernice Lo,1,2* Kejian Zhang,3* Wei Lu,1,2 Lixin Zheng,1,2 Qian Zhang,2,4

Chrysi Kanellopoulou,1,2 Yu Zhang,2,4 Zhiduo Liu,5 Jill M. Fritz,1,2 Rebecca Marsh,6

Ammar Husami,3 Diane Kissell,3 Shannon Nortman,3 Vijaya Chaturvedi,6

Hilary Haines,7 Lisa R. Young,8 Jun Mo,9 Alexandra H. Filipovich,6 Jack J. Bleesing,6

Peter Mustillo,10 Michael Stephens,11 Cesar M. Rueda,12 Claire A. Chougnet,12

Kasper Hoebe,12 Joshua McElwee,13 Jason D. Hughes,13 Elif Karakoc-Aydiner,14

Helen F. Matthews,1,2 Susan Price,1,2 Helen C. Su,2,4 V. Koneti Rao,1,2

Michael J. Lenardo,1,2† Michael B. Jordan6,12†‡

Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like
anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral
immune deficiency. The biological role of LRBA in immunologic disease is unknown.We
found that patients with LRBAdeficiencymanifested a dramatic and sustained improvement
in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)–immunoglobulin
fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular
trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune
receptor.We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA
deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of
CTLA4 protein in FoxP3+ regulatory and activated conventional Tcells. In LRBA-deficient
cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss.These
findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and
suggest therapies for diseases involving the CTLA4 pathway.

C
ommon variable immune deficiency (CVID)
is a heterogeneous primary immunodefi-
ciency characterized by antibody deficiency,
infections, autoimmunity, and lymphopro-
liferation (1, 2). Lymphocytic interstitial

lung disease (ILD) causes substantial morbidity
and mortality in CVID, and there is no effective
treatment (3–6). CVID can be caused by “lipo-
polysaccharide (LPS)–responsive vesicle traffick-
ing, beach- and anchor-containing” (LRBA) gene
defects (7). The LRBA protein has domains ho-
mologous to vesicle trafficking proteins, but its
function and relation to disease pathogenesis are
unknown (8, 9).
Cytotoxic T lymphocyte–associated protein 4

(CTLA4) is an inhibitory checkpoint protein,
expressed on activated T cells and FoxP3+ regu-
latory T cells (Tregs) (10). CTLA4 inhibits immune
responses by negative signaling, by competition
with the costimulatory molecule CD28 for the
ligands CD80 and CD86, or by removing these
ligands from antigen-presenting cells by trans-
endocytosis (11, 12). CTLA4 resides in endocytic
vesicles that are released to the cell surface after

T cell receptor (TCR) stimulation (13). The clin-
ical effectiveness and adverse effects of CTLA4
modulation are revealed by three approved drugs
that mimic or target CTLA4: abatacept for rheu-
matoid arthritis, belatacept for prevention of re-
jection after renal transplantation, and ipilimumab
for the immunotherapy of melanoma (14–16).
We identified nine patients with immune de-

ficiency and/or autoimmunity from eight un-
related kindreds with biallelic loss-of-function
mutations in LRBA that have not been previous-
ly reported (Fig. 1A). All mutations decreased or
abolished LRBA protein expression as assessed
by immunoblotting and flow cytometry (Fig. 1,
B and C, and fig. S1).
The clinical features of these patients are de-

scribed in detail in the supplementary text and
table S1. Most patients were diagnosed in early
childhood with CVID, and all patients experi-
enced substantial inflammatory and/or auto-
immune complications. Notably, LRBA deficiency
was associated with interesting phenotypic char-
acteristics in several patients, including type 1
diabetes mellitus (patients 1 and 2), Burkitt’s lym-

phoma (patient 6), and exocrine pancreatic in-
sufficiency (patient 1). Patients 1 to 3 experienced
severe ILD—consisting of dense, predominantly
T cell interstitial infiltrates—which was refrac-
tory to multiple medications and led to progres-
sive impairment of lung function (Fig. 1D). Note
that, when patients were treated with abatacept
[a CTLA4-immunoglobulin (CTLA4-Ig) fusion pro-
tein that inhibits T cell responses by competing
for costimulatory ligands], their overall clinical
status, computed tomography (CT) scans, and
pulmonary function showed rapid and dramatic
improvement (Fig. 2). Treatment also halted on-
going inflammatory and/or autoimmune condi-
tions (Fig. 2A); decreased levels of soluble CD25
(sCD25, a biomarker of T cell–mediated inflam-
mation) (17); increased naïve:effector (CD45RA:
RO) T cell ratios (fig. S2); and improved func-
tional antibody responses to polysaccharide vac-
cine antigens in patient 2. In the three patients
treated initially, the improvements in lung disease
were maintained when abatacept was continued
for 5 to 8 years. This treatment had minimal in-
fectious or autoimmune complications. Patients 1
and 3 acquired norovirus infection (see supple-
mentary text), which can cause chronic enteritis
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Fig. 1. LRBA deficiency and interstitial lung disease. (A) Shown are the
novel biallelic LRBA mutations of nine patients from eight unrelated kindreds
mapped onto a schematic representation of LRBA illustrating the protein
domains. Amino acid changes are referred to by their single letter code. Asterisk
(*) indicates a premature stop codon. Orange thin double bars indicate the
A-kinase–anchoring protein (AKAP) motif. Con A, Con A–like lectin domain.
Patients 3 and 5 are compound heterozygous for the two mutations indicated.
Patient 6 is compound heterozygous for p.V2249Fmutation from father and

p.A2535V and p.L1834P mutations from mother. Patient 8 is compound heterozy-
gous for the mutation indicated and an intronic mutation c.8502-1G>C, which is
predicted to affect mRNA splicing. (B) Immunoblotting for patients 1 to 5 and (C)
flow cytometry for patients 6 and 7 show loss of LRBA compared with a healthy
donor (HD). DOCK8 is included as a loading control. Mean fluorescence intensity
for LRBA is indicated in histogram. (D) Hematoxylin and eosin staining of healthy
donor lung and lung from patient 1. Also shown are immunostains for CD20 (B
cells) andCD3 (Tcells) on lung frompatient 2. Scale bars are indicated inmicrons.

Fig. 2. Sustained response to abatacept in three LRBA-deficient
patients. (A) Timeline showing multiple clinical features and therapy
with abatacept in patients 1 to 3. Gray shading indicates time of ther-
apy with abatacept with dosing initially 20 mg/kg of body weight
intravenously (i.v.) every2weeks forpatients 1 and3, and20mg/kg i.v.
every 4 weeks in patient 2. “Norovirus” indicates onset of intermittent
abdominal symptomsassociatedwith acquisition of chronic norovirus
infection. (B) High-resolution CT scans (patients 1 to 3) and pul-
monary function tests (patients 1 and 3) before and after abatacept.
Arrows highlight examples of lung disease improvement before and
after abatacept. FVC, forced vital capacity; FEV1, forced expiratory
volume;TLC, total lungcapacity; DLCO,diffusingcapacityof the lungs
for carbon monoxide.
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in patients with CVID (18). Patient 1 also de-
veloped Legionella pneumophila pneumonia,
and patient 2 developed psoriasis. Patients 4, 8,
and 9 were started on abatacept within the
last 6 months for the treatment of intractable
enteritis and other features of autoimmunity and
have begun to show improvement (see supple-
mentary text).
Given the dramatic clinical improvement of

LRBA-deficient patients with a CTLA4 immuno-
modulator, we hypothesized that LRBA might
control the expression, function, or trafficking
of CTLA4. In healthy donors, CTLA4 is mainly
in intracellular vesicles of Tregs (19). CTLA4 can
be mobilized to the cell surface by TCR stimu-
lation (fig. S3A). We found that the abundance
of total (intracellular) and mobilized (cell sur-
face) CTLA4 was substantially depressed in Tregs
from LRBA-deficient patients (Fig. 3A and fig S3,
A to C). Note that CTLA4mRNA levels were nor-
mal in these patients, which suggested that
LRBA posttranslationally regulates CTLA4 pro-
tein (fig. S3C). After stimulationwith CD3-specific
antibody and interleukin 2 (IL-2), conventional
(FoxP3–) T cells express CTLA4, but this response
was also deficient in patient cells (fig. S3D). Pa-
tients 5 and 6, who have residual LRBA protein
(Fig. 1, B and C), had the highest residual CTLA4
levels in FoxP3+ T cells (Fig. 3A, triangles), which
suggests anLRBAdose-dependent effect onCTLA4
expression. Even so, patient samples showed nor-
mal mobilization of other endosomal proteins, in-
cluding CD154 and CD107 (20), which indicated
that LRBA-deficient T cells were not globally de-
fective in vesicle trafficking (fig. S4). We also
found that CTLA4-dependent cellular functions
were impaired in patient cells: CD4+ and CD8+ T
cells were hyperproliferative in vitro; patient Tregs
showed impaired trans-endocytosis of CD80 and
had decreased suppressive function in a CTLA4-
dependent assay (fig. S5). Consistent with these
functional defects and the reported phenotypes
of CTLA4-haploinsufficient patients and the orig-
inal description of LRBA-deficient patient Tregs
by Charbonnier and colleagues (21, 22), we found
that patient Tregs expressed lower levels of CD25
and Foxp3 along with CTLA4 (fig. S6).
To verify that LRBA deficiency was sufficient

to impair CTLA4 expression, we performed small
interfering RNA (siRNA)–mediated knockdown of
LRBA in normal donor T cells. This treatment low-
ered the abundance of CTLA4 protein to levels
comparable to those in patient samples but had
no effect on CTLA4mRNA (Fig. 3B and fig. S7B).
Further, when protein synthesis was inhibited
with cycloheximide (CHX), CTLA4 protein was
rapidly lost in LRBA knockdown cells, which in-
dicated accelerated degradation (Fig. 3C). Thus,
decreased LRBAprotein caused an apparent post-
translational loss of CTLA4 protein in T cells.
CTLA4 trafficking to the cell surface was appar-
ently not impaired by LRBA deficiency, because
the amount of CTLA4 that mobilized to the cell
surface was proportional to the total intracel-
lular levels of CTLA4 (Fig. 3, A and B). We also
found that CTLA4 endocytosis was normal after
LRBA knockdown using previously described

techniques. The majority of CTLA4 was inter-
nalized whether or not LRBAwas knocked down
(fig. S8).

These results, especially the rapid loss of CTLA4
after CHX treatment, led us to hypothesize that
LRBA regulates the lysosomal degradation of
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CTLA4. Indeed, when we examined the subcel-
lular localization of CTLA4 using a flow micros-
copy technique (Imagestream), we found that
more CTLA4 localized to CD107+ lysosomes in
patient T cells than in T cells from healthy do-
nors (fig. S9). Furthermore, when we treated
T cells from patients and healthy donors with
chloroquine to inhibit lysosomal degradation, we
found that CTLA4 protein levels rose sharply in
patient T cells but only modestly in healthy
donor (HD) T cells (Fig. 3, D to F, and fig. S10).
We also observed rescue of CTLA4 in LRBA knock-
down cells with chloroquine and other agents that

inhibit lysosomal acidification, fusion, or protein
degradation, including brefeldin A, monensin,
NH4Cl, and a cocktail of protease inhibitors
(Fig. 3G and figs. S10 and S11).
Although the function of LRBA has been un-

clear, related BEACH domain–containing pro-
teins regulate trafficking of intracellular vesicles
(8, 23). Consistent with our hypothesis that LRBA
controls CTLA4-containing vesicles, we observed
that CTLA4 and LRBA colocalized within re-
cycling endosomes and the trans-Golgi network
in normal T cells indicated by their coincidence
with the Rab11 and Syntaxin 6 (STX6) markers,

respectively (Fig. 4, A and B). It is interesting
that the transferrin receptor (CD71), which traf-
fics through recycling endosomes, was also re-
duced in LRBA knockdown cells, which suggests
that LRBA may specifically regulate recycling en-
dosomes (fig. S12 and S13). CD28 family mem-
bers and molecules known to traffic through
other vesicles, including CD28, ICOS, PD-1, and
CD154 were unaffected in LRBA knockdown cells
(fig. S12). Consistent with their cellular colocal-
ization, we found that CTLA4 and LRBA coimmu-
noprecipitate (Fig. 4C) and that this interaction
required the concanavalin A (Con A)–like lectin
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domain and the pleckstrin homology (PH)–like
BEACH domain of LRBA and the cytoplasmic
tail of CTLA4 (Fig. 4, D and E). CTLA4 with its
cytoplasmic tail substituted with the correspond-
ing CD28 tail could not bind LRBA (Fig. 4E). Note
that we found that mutating the conserved tyro-
sine residue in the Tyr-Val-Lys-Met (YVKM) motif
present in the tail of CTLA4 led to loss of bind-
ing (Fig. 4E). These experiments established that
the CTLA4 tail—and the YVKM motif specifi-
cally—are necessary for LRBA association. We
next investigated whether the tail of CTLA4 is
sufficient for the LRBA interaction. If so, this
would be consistent with the topology of CTLA4
(tail facing the cytoplasm) and would allow LRBA
to use the tail as a handle to guide the move-
ment of CTLA4-bearing recycling endosomes.
We found that addition of the CTLA4 tail to
GFP could coimmunoprecipitate LRBA, which
confirmed that the CTLA4 tail is necessary and
sufficient to mediate the interaction (Fig. 4E).
Finally, to further understand how the loss

of LRBA leads to CTLA4 degradation, we assessed
the role of AP-1, the clathrin-associated adaptor
protein complex previously implicated in the
shuttling of CTLA4 to lysosomes (24). Knock-
down of AP-1, but not AP-2 nor AP-3 (other
trafficking adaptors), could partially rescue the
loss of CTLA4 and CD71 in LRBA knockdown
cells (Fig. 4F and fig. S13). Note that the YVKM
motif of CTLA4, which is critical for the inter-
action with LRBA, is also known to bind to AP-1,
which suggests that LRBA may block CTLA4
trafficking to lysosomes by competing with AP-1
for binding to this motif. Taken together, these
data indicate that LRBA plays a major immuno-
regulatory role by protecting CTLA4 from being
sorted to and degraded within lysosomes.
In summary, therapy targeting CTLA4 was

highly effective in reversing life-threatening in-
filtrative and autoimmune disease in LRBA-
deficient patients. Molecular investigation of this
effect revealed LRBA as an important control
point for the lysosomal turnover of CTLA4 pro-
tein in T lymphocytes. LRBA is a 300-kD protein,
one of the largest intracellular proteins, with a
structure suggesting an adaptor function (8, 9).
It harbors a BEACH domain that has been im-
plicated in intracellular vesicle regulation. A
previous investigation suggested that lysosomal
processes involving autophagy were defective
in LRBA-deficient cells (7). By contrast, our data
indicate that, at least for CTLA4, lysosomal deg-
radation is enhanced when LRBA is absent. Thus,

LRBAhelpsmaintain intracellular stores of CTLA4,
which allows the protein to mobilize rapidly to the
cell surface where it can perform its inhibitory
function in Tregs and memory T cells. This post-
translational mechanism for regulating CTLA4 ex-
pression in humanT cells is depicted schematically
in Fig. 4G.
Early investigations of CTLA4 deficiency in

mice revealed fatal lymphoproliferative and au-
toimmune disease (25–27). Also, CTLA4 haploin-
sufficiency with autoimmune infiltration (CHAI)
disease due to genetic haploinsufficiency of CTLA4
has been described (21, 28). Patients with CHAI
disease exhibit a clinical phenotype similar to
that of peoplewithLRBAdeficiency, whichunder-
scores the disease connection between CTLA4
and LRBA (7, 29, 30). Our findings provide a clear
rationale for the prospective study of CTLA4-
targeted therapies for LRBA deficiency and other
disorders that lead to reduced CTLA4 levels. Re-
cent reports have confirmed the long-term safety
and efficacy of abatacept in patients with rheu-
matoid arthritis, although treatment is associ-
ated with increased infections (31, 32). Because
abatacept will reinforce the immune checkpoint
on T cells, it could hypothetically blunt antitumor
responses, and this will need to be monitored
with long-term use. Our studies also suggest
that chloroquine or hydroxychloroquine, relatively
inexpensive drugs that inhibit lysosomal degra-
dation, may merit investigation as therapies for
diseases with LRBA or CTLA4 deficiency. Note
that hydroxychloroquine has shown therapeutic
efficacy in systemic lupus erythematosus (33),
which we now postulate might stem from an en-
hancement of CTLA4.
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